A Fictitious Domain Method with Mixed Finite Elements for Elastodynamics

نویسندگان

  • Éliane Bécache
  • Jerónimo Rodríguez
  • Chrysoula Tsogka
چکیده

We consider in this paper the wave scattering problem by an object with Neumann boundary conditions in an anisotropic elastic body. To obtain an efficient numerical method (permitting the use of regular grids) we follow a fictitious domain approach coupled with a first order velocity stress formulation for elastodynamics. We first observe that the method does not always converge when the Qdiv 1 − Q0 finite element is used. In particular, the method converges for some scattering object geometries but not for others. Note that the convergence of the Qdiv 1 −Q0 finite element method was shown in [E. Bécache, P. Joly, and C. Tsogka, SIAM J. Numer. Anal., 39 (2002), pp. 2109–2132] for the elastodynamic problem in the absence of a scattering object (i.e., without the coupling of the mixed finite elements with the fictitious domain method). Therefore we propose here a modification of the Qdiv 1 −Q0 element following the approach in [E. Bécache, J. Rodŕıguez, and C. Tsogka, On the convergence of the fictitious domain method for wave equation problems, Technical report 5802, INRIA, 2006], where the simpler acoustic case was considered. To study the numerical properties of the new element we carry out a dispersion analysis. Several numerical simulations as well as a numerical convergence analysis show that the proposed method provides a good approximate solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fictitious domain method for unilateral contact problems in non-destructive testing

In this work, we present a numerical method for solving the diffraction of transient elastic waves by cracks of arbitrary shapes in complex media, with Signorini’s boundary conditions on the crack. We use a fictitious domain method based on a mixed displacement–stress formulation for elastodynamics. We propose an off-centered time discretisation scheme for enforcing the stability.

متن کامل

Simulation of cell movement through evolving environment: a fictitious domain approach

A numerical method for simulating the movement of unicellular organisms which respond to chemical signals is presented. Cells are modelled as objects of finite size while the extracellular space is described by reaction-diffusion partial differential equations. This modular simulation allows the implementation of different models at the different scales encountered in cell biology and couples t...

متن کامل

Publications of Douglas N. Arnold

• Mixed methods for elastodynamics with weak symmetry. • Mixed finite elements for elasticity on quadrilateral meshes. • Finite element differential forms on curvilinear cubic meshes and their approximation properties. Numer. • Nonconforming tetrahedral mixed finite elements for elasticity. • Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions. Math. • ...

متن کامل

High-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes

For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, wh...

متن کامل

An operator splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems

We propose a novel fictitious domain method based on a distributed Lagrange multiplier technique for the solution of the time-dependent problem of scattering by an obstacle. We study discretizations that include a fully conforming approach as well as mixed finite element formulations utilizing the lowest order Nédélec edge elements (in 2D) on rectangular grids. We also present a symmetrized ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007